AP CALCULUS FORMULA LIST

Definition of e: $\quad e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

Absolute Value: $\quad|x|=\left\{\begin{array}{lll}x & \text { if } & x \geq 0 \\ -x & \text { if } & x<0\end{array}\right.$

Definition of the Derivative:

$$
\begin{array}{lll}
f^{\prime}(x)=\lim _{\Delta x \rightarrow \infty} \frac{f(x+\Delta x)-f(x)}{\Delta x} & & f^{\prime}(x)=\lim _{h \rightarrow \infty} \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(a)=\lim _{h \rightarrow \infty} \frac{f(a+h)-f(a)}{h} & & \text { derivative at } x=a \\
f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} & & \text { alternate form }
\end{array}
$$

Definition of Continuity:
f is continuous at c iff:
(1) $f(c)$ is defined
(2) $\lim _{x \rightarrow c} f(x)$ exists
(3) $\lim _{x \rightarrow c} f(x)=f(c)$

Average Rate of Change of $f(x)$ on $[a, b]=\frac{f(b)-f(b)}{b-a}$

Rolle's Theorem:

If f is continuous on $[a, b]$ and differentiable on (a, b) and if $f(a)=f(b)$, then there exists a number c on (a, b) such that $f^{\prime}(c)=0$.

Mean Value Theorem:
If f is continuous on $[a, b]$ and differentiable on (a, b), then there
exists a number c on (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Note: Rolle's Theorem is a special case of The Mean Value Theorem
If $f(a)=f(b)$ then $f^{\prime}(c)=\frac{f(a)-f(b)}{b-a}=\frac{f(a)-f(a)}{b-a}=0$.

Intermediate Value Theorem:
If f is continuous on $[a, b]$ and k is any number between $f(a)$ and $f(b)$, then there is at least one number c between a and b such that $f(c)=k$.

Definition of a Critical Number:

Let f be defined at c. If $f^{\prime}(c)=0$ or f^{\prime} is is undefined at c, then c is a critical number of f.

First Derivative Test:

Let c be a critical number of the function f that is continuous on an open interval I containing c. If f is differentiable on I, except possibly at c, then $f(c)$ can be classified as follows.
(1) If $f^{\prime}(x)$ changes from negative to positive at c, then $f(c)$ is a relative minimum of f.
(2) If $f^{\prime}(x)$ changes from positive to negative at c, then $f(c)$ is a relative maximum of f.

Second Derivative Test:

Let f be a function such that $f^{\prime}(c)=0$ and the second derivative exists on an open interval containing c.
(1) If $f^{\prime \prime}(c)>0$, then $f(c)$ is a relative minimum.
(2) If $f^{\prime \prime}(c)<0$, then $f(c)$ is a relative maximum.

Definition of Concavity:

Let f be differentiable on an open interval I. The graph of f is concave upward on I if f^{\prime} is increasing on the interval, and concave downward on I, if f^{\prime} is decreasing on the interval.

Test for Concavity:

Let f be a function whose second derivative exists on an open interval I.
(1) If f " $(x)>0$ for all x in I, then the graph of f is concave upward on I.
(2) If $f^{\prime \prime}(x)<0$ for all x in I, then the graph of f is concave downward on I.

Definition of an Inflection Point:

A function f has an inflection point at $(c, f(c))$ if
(1) f " $(c)=0$ or $f "(c)$ does not exist, and if
(2) f changes concavity at $x=c$.

Exponential Growth:

$$
\frac{d y}{d t}=k y \quad y(t)=C e^{k t}
$$

Derivative of an Inverse Function: $\quad\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$

First Fundamental Theorem of Calculus:

$$
\int_{\mathrm{a}}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Second Fundamental Theorem of Calculus:
$\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$
$\frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f(g(x)) \cdot g^{\prime}(x) \quad$ Chain Rule Version

The Average Value of a Function:
Average value of $f(x)$ on $[a, b] \quad f_{A V E}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

Volume of Revolution:

Volume around a horizontal axis by discs: $\quad V=\pi \int_{a}^{b}[r(x)]^{2} d x$
Volume around a horizontal axis by washers: $\quad V=\pi \int_{a}^{b}\left\{[R(x)]^{2}-[r(x)]^{2}\right\} d x$

Volume of Known Cross-Section:
Cross-sections perpendicular to x-axis: $\quad V=\int_{a}^{b} A(x) d x$

Position, Velocity, Acceleration:
If an object is moving along a straight line with position function $s(t)$, then
Velocity is: $\quad v(t)=s^{\prime}(t)$
Speed is: $|v(t)|$
Acceleration is: $\quad a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$
Displacement from $x=a$ to $x=b$ is: \quad Displacement $=\int_{a}^{b} v(t) d t$
Note: Displacement is a change in position.
Total Distance traveled from $x=a$ to $x=b$ is: Total Distance $=\int_{a}^{b}|v(t)| d t$

TRIGONOMETRIC IDENTITIES

Pythagorean Identities:

$\sin ^{2} x+\cos ^{2} x=1$
$\tan ^{2} x+1=\sec ^{2} x$
$1+\cot ^{2} x=\csc ^{2} x$

Sum \& Difference Identities

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \quad \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{aligned}
$$

Double Angle Identities

$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\left\{\begin{array}{l}\cos ^{2} x-\sin ^{2} x \\ 1-2 \sin ^{2} x \\ 2 \cos ^{2} x-1\end{array} \quad \cos ^{2} x=\frac{1+\cos 2 x}{2} \quad \sin ^{2} x=\frac{1-\cos 2 x}{2}\right.$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$

Half Angle Identities

$$
\sin \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{2}} \quad \cos \frac{x}{2}= \pm \sqrt{\frac{1+\cos x}{2}} \quad \tan \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{1+\cos x}}=\frac{\sin x}{1+\cos x}=\frac{1-\cos x}{\sin x}
$$

CALCULUS BC ONLY

Integration by Parts: $\int u d v=u v-\int v d u$

Arc Length of a Function:

For a function $f(x)$ with a continuous derivative on $[a, b]$:
Arc Length is : $\quad s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$

Area of a Surface of Revolution:

For a function $f(x)$ with a continuous derivative on $[a, b]$:
Surface Area is: $\quad S=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$

Parametric Equations and the Motion of an Object:
Position Vector $=(x(t), y(t))$
Velocity Vector $=\left(x^{\prime}(t), y^{\prime}(t)\right)$
Acceleration Vector $=\left(x "(t), y^{\prime \prime}(t)\right)$
Speed (or, magnitude of the velocity vector): $\quad|v(t)|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$
Distance traveled from $t=a$ to $t=b$ is: $\quad s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
Note: The distance traveled by an object along a parametric curve is the same as the arc length of a parametric curve.
Slope (1'st derivative) of curve C at $(x(t), y(t))$ is: $\quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t}$
Second derivative of curve C at $(x(t), y(t))$ is: $\quad \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{d x / d t}$

L'Hôpital's Rule:

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Polar Coordinates and Graphs:
For $r=f(\theta): \quad x=r \cos \theta, \quad y=r \sin \theta, \quad r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}$
Slope of a polar curve: $\quad \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta}{-f(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta}=\frac{r \cos \theta+r^{\prime} \sin \theta}{-r \sin \theta+r^{\prime} \cos \theta}$
Area inside a polar curve: $\quad A=\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} d \theta=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta$
Arc length $(*): \quad s=\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$
Surface of Revolution (*):
about the polar axis: $\quad S=2 \pi \int_{\alpha}^{\beta} f(\theta) \sin \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta$
about $\theta=\frac{\pi}{2}: \quad S=2 \pi \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta$

Euler's Method:

Approximating the particular solution to: $y^{\prime}=\frac{d y}{d x}=F(x, y)$

$$
x_{n}=x_{n-1}+h \quad y_{n}=y_{n-1}+h \cdot F\left(x_{n-1}, y_{n-1}\right) \quad \text { given: } h=\Delta x,\left(x_{0}, y_{0}\right)
$$

Logistic Growth:

$$
\frac{d P}{d t}=k P \cdot\left(1-\frac{P}{L}\right) \quad P(t)=\frac{L}{1+C e^{-k t}} \quad \text { where }:\left\{\begin{array}{l}
k \text { is the proportionality constant } \\
L \text { is the Carrying Capacity } \\
C \text { is the integration constant }
\end{array}\right.
$$

The n'th Taylor Polynomial for f at c :

$$
P_{n}(x)=f(c)+f^{\prime}(c) \cdot(x-c)+\frac{f^{\prime \prime}(c)}{2!} \cdot(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!} \cdot(x-c)^{n}
$$

The n'th MacLaurin Polynomial for f is the Taylor Polynomial for f when $c=0$.

$$
P_{n}(x)=f(0)+f^{\prime}(0) \cdot x+\frac{f^{\prime \prime}(0)}{2!} \cdot x^{2}+\frac{f^{\prime \prime}(0)}{3!} \cdot x^{3}+\cdots+\frac{f^{(n)}(0)}{n!} \cdot x^{n}
$$

$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$

