DIFFERENCE OF PERFECT SQUARES

- Must have two terms with a minus
- All exponents must be even because they will get divided by 2
- All coefficients and constants must be perfect squares (1, 4, $9,16,25,36,49,64,81,100,121,144,169,196,225$, etc.) because we will $\sqrt{ }$ them
- The answer will be conjugate pairs (+)(-)
- Always check the (-) to see if that is also DOPS and if yes, factor that one also (see Example 2 below)

Example 1: $64 x^{2}-49 y^{4}$
We divide the exponents by 2 and square root the 64 and 49 $\left(8 x+7 y^{2}\right)\left(8 x-7 y^{2}\right)$

Example 2: $c^{24}-h^{36}$
First, we divide the exponents by 2 to get
$\left(c^{12}+h^{18}\right)\left(c^{12}-h^{18}\right)$
Since ($c^{12}-h^{18}$) is DOPS, we go again.
$\left(c^{12}+h^{18}\right)\left(c^{6}+h^{9}\right)\left(c^{6}-h^{9}\right)$
The factoring is complete because h now has an odd exponent.

